skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Sota‐Uba, Isio"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract A potential method to determine whether two varieties of edible oils can be differentiated by Fourier transform infrared (FTIR) spectroscopy is proposed using digitally generated data of adulterated edible oils from an infrared (IR) spectral library. The first step is the evaluation of digitally blended data sets. Specifically, IR spectra of adulterated edible oils are computed from digitally blending experimental data of the IR spectra of an edible oil and the corresponding adulterant using the appropriate mixing coefficients to achieve the desired level of adulteration. To determine whether two edible oils can be differentiated by FTIR spectroscopy, pure IR spectra of the two edible oils are compared with IR spectra of two edible oils digitally mixed using a genetic algorithm for pattern recognition to solve a ternary classification problem. If the IR spectra of the two edible oils and their binary mixtures are differentiable from principal component plots of the spectral data, then differences between the IR spectra of these two edible oils are of sufficient magnitude to ensure that a reliable classification by FTIR spectroscopy can be obtained. Using this approach, the feasibility of authenticating edible oils such as extra virgin olive oil (EVOO) directly from library spectra is demonstrated. For this study, both digital and experimental data are combined to generate training and validation data sets to assess detection limits in FTIR spectroscopy for the adulterants. 
    more » « less